Stability, instability, and bifurcation phenomena in non-autonomous differential equations
نویسندگان
چکیده
There is a vast body of literature devoted to the study of bifurcation phenomena in autonomous systems of differential equations. However, there is currently no well-developed theory that treats similar questions for the non-autonomous case. Inspired in part by the theory of pullback attractors, we discuss generalizations of various autonomous concepts of stability, instability, and invariance. Then, by means of relatively simple examples, we illustrate how the idea of a bifurcation as a change in the structure and stability of invariant sets remains a fruitful concept in the non-autonomous case. Mathematics Subject Classification: Primary 37G10, 37G35; secondary 34D05, 34D23
منابع مشابه
Bifurcations in non-autonomous scalar equations
In a previous paper we introduced various definitions of stability and instability for non-autonomous differential equations, and applied these to investigate the bifurcations in some simple models. In this paper we present a more systematic theory of local bifurcations in scalar non-autonomous equations.
متن کاملSPATIOTEMPORAL DYNAMIC OF TOXIN PRODUCING PHYTOPLANKTON (TPP)-ZOOPLANKTON INTERACTION
The present paper deals with a toxin producing phytoplankton (TPP)-zooplankton interaction in spatial environment in thecontext of phytoplankton bloom. In the absence of diffusion the stability of the given system in terms of co-existence and hopf bifurcation has been discussed. After that TPP-zooplankton interaction is considered in spatiotemporal domain by assuming self diffusion in both popu...
متن کاملCenter manifold analysis and Hopf bifurcation of within-host virus model
A mathematical model of a within-host viral infection is presented. A local stability analysis of the model is conducted in two ways. At first, the basic reproduction number of the system is calculated. It is shown that when the reproduction number falls below unity, the disease free equilibrium (DFE) is globally asymptotically stable, and when it exceeds unity, the DFE is unstable and there ex...
متن کاملBifurcation Dynamics of Three-Dimensional Systems
Oscillations described by autonomous three-dimensional differential equations display multiple periodicities and chaos at critical parameter values. Regardless of the subsequent scenario the key instability is often an initial bifurcation from a single period oscillation to either its subharmonic of period two, or a symmetry breaking bifurcation. A generalized third-order nonlinear differential...
متن کاملStability and Bifurcation Analysis of Volterra Functional Equations in the Light of Suns and Stars
We show that the perturbation theory for dual semigroups (sun-star-calculus) that has proved useful for analyzing delay-differential equations is equally efficient for dealing with Volterra functional equations. In particular, we obtain both the stability and instability parts of the principle of linearized stability and the Hopf bifurcation theorem. Our results apply to situations in which the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2001